Structure and stability of Fe3C-cementite surfaces from first principles
نویسندگان
چکیده
We report results of gradient-corrected pseudopotential-based density functional theory calculations on bulk Fe3C in the cementite structure and its (0 0 1), (1 1 0), (0 1 1), (1 0 0), (1 0 1), (0 1 0), and (1 1 1) surfaces. Bulk properties are in reasonable agreement with available experimental data. The cementite local density of states shows predominantly metallic character, along with some polar covalent bonding contributions (charge transfer from iron to carbon) for both bulk and surfaces. We predict cementite surface energies in the range of 2.0–2.5 J/m, most of which are lower than all pure Fe surface energies. In particular, we predict the Fe3C (0 0 1) surface to be the most stable and the Fe3C (1 0 0) surface to be the least stable. We show that greater stability is associated with localized Fe–C bonding at the surface, smoother surfaces created, e.g., by large C atom relaxation into the bulk, and more uniform coordination at the surface. The relatively greater stability of Fe3C surfaces is suggested to provide the driving force for cementite to form at the surfaces of bcc iron. Implications for the carburization erosion mechanism for steel, such as cracking and melting, are discussed. 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Substitutional solution of silicon in cementite: A first-principles study
Cementite precipitation from austenite in steels can be suppressed by alloying with silicon. There are, however, no validated thermodynamic data to enable phase equilibria to be estimated when silicon is present in cementite. The formation energies of Fe3C, (Fe11Si 4c Fe)C4 and (Fe11Si 8d Fe)C4 have therefore been estimated using firstprinciples calculations based on the total-energy all-electr...
متن کاملA low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction.
In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high ...
متن کاملStructures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation.
Spin-polarized density functional theory computations have been carried out to study the stable adsorption configurations of Cun (n = 1-7, 13) on Fe and Fe3C surfaces for understanding the initial stages of copper promotion in catalysis. At low coverage, two-dimensional aggregation is more preferred over dispersion and three-dimensional aggregation on the Fe(110) and Fe(100) surfaces as well as...
متن کاملLoad partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel
An ultrahigh-carbon steel was heat-treated to form an in situ composite consisting of a fine-grained ferritic matrix with 34 vol.% submicron spheroidized cementite particles. Volume-averaged lattice elastic strains for various crystallographic planes of the a-Fe and Fe3C phases were measured by synchrotron X-ray diffraction for a range of uniaxial tensile stresses up to 1 GPa. In the elastic ra...
متن کاملSearching for high magnetization density in bulk Fe: the new metastable Fe₆ phase.
We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe6 is shown to result from the stabilizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003